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A b s t r a c t  

A matricial theory of coincidence-site and displace- 
ment-shift-complete (DSC) lattices of arbitrary dimen- 
sion is developed. Vector bases for these lattices can 
easily be determined from particular factorizations of 
the matrix defining the relative orientation. Various 
properties of the two lattices are derived, including the 
reciprocity relations. The general conditions for co- 
incidence and the problem of coincidence in sublattices 
of lower dimension are also discussed. 

1. I n t r o d u c t i o n  

Coincidence-site-lattice (CSL) theory has deserved 
considerable attention in recent years, mostly as a 
consequence of the relative success of the models of 
crystalline interfaces based on the properties of CSL 
and related lattices (Brandon, Ralph, Ranganathan & 
Wald, 1964; Bollmann, 1970; Pumphrey, 1976). Most 
of the work has been on CSL's of two identical 
three-dimensional lattices, especially cubic lattices 
(Ranganathan, 1966; Fortes, 1972; Grimmer, 1973; 
Grimmer, Bollmann & Warrington, 1974; Bleris & 
Delavignette, 1981) and hexagonal lattices (Fortes, 
1973; Warrington, 1975; Bonnet, Cousineau & War- 
rington, 1981), although attention has also been given 
to the general case of two different three-dimensional 
lattices (Bucksch, 1972; Santoro & Mighell, 1973; 
Grimmer, 1976; Iwasaki, 1976; Bonnet & Cousineau, 
1977; Fortes, 1977; Bacmann, 1979). These lattices 
are, of course, of special importance in solid-state 
physics and metallurgy, but recently attention has been 
given to lattices of higher dimension (e.g. by Schwar- 
zenberger, 1974; Brown, Billow, Neubilser, Won- 
dratschek & Zassenhaus, 1978). 

Both matrix algebra and number theory are funda- 
mental tools in the study of CSL's and both have been 
used to derive a considerable number of properties and 
methods of analysis of such lattices. In some cases, 
however, properties have been enunciated without 
satisfactory proof, and, in general, rather different 
methods of derivation were used by different authors to 

establish them. The purpose of this paper is therefore to 
present a unified, formal theory of CS and related 
lattices and to pr6cis some of the literature results. The 
theory is applicable to any two n-dimensional lattices. 
The study of coincidence between two lattices of 
different dimensions, m and n (m < n), can always be 
reduced to that case, by considering the sublattice of 
the n-dimensional lattice that lies in the space spanned 
by the m-dimensional lattice. However, we shall treat 
explicitly coincidence in sublattices of lower dimension 
than the dimension of the two given lattices. The theory 
is first presented for the case where a CSL can be 
defined of the same dimension as that of the given 
lattices. The problem of coincidence in sublattices of 
lower dimension will be discussed in § 5. 

2. G e n e r a l  f o r m u l a t i o n  

2.1. Sublattices and superlattices 

Consider an s-dimensional lattice with a vector basis 
(el, e2, ..., es) = (e). The lattice vectors are of the form 
~.iai ei, where the a~ can take any integral values 
independently of each other. The metric matrix G = 
(gij) is defined by gij = ei.ej. The volume of the 
primitive cell defined by (e) is 

f2 = (det 6) 1/2. (1) 

For three-dimensional lattices it is frequently im- 
portant to determine the type of Bravais lattice; this can 
be done from G using the method of reduced cells. 

Consider a second set of s vectors (e') related to the 
(e) by a non-singular (square) matrix U = (uij) of order 
s: 

[e' l e~ . . .  e's] = [e I e 2 . . .  e~] U, (2)  

where [e I ... es] , for example, is to be regarded as a row 
matrix and the product (2) is calculated according to 
the rules of matrix algebra: 

e" = Y ejuji. (3) 
J 
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Since U is non-singular, the set (e') defines another 
s-dimensional lattice, the metric matrix of which is 

G' = U r GU, (4) 

where U r is the transpose of U. A condensed notation 
e = [e 1 ... e s] will be used in matrical equations. 
Equation (2) is then written as 

e' = e U  ( 5 a )  

o r  

e = e' U - l .  (5b)  

Three particular cases will be considered (cf. Santoro 
& Mighell, 1972): 

1. U = T is an integral matrix (i matrix) with 
det T = 1 (which we call a 1 matrix). The lattice defined 
by (e') is identical to lattice (e) since all vectors of the 
former are vectors of the latter and vice versa (note 
that T -1 is also a 1 matrix). The matrix T just defines a 
change of basis, i.e. the two sets of vectors are two 
different bases of the same lattice. 

2. U = N is an i matrix with I detNI = 2'. The 
vectors (e') belong to the lattice (e) and define a 
sublattice of (e). Since det G' = 272 det G, it can be 
concluded from (1) that the volume of a primitive cell 
of the sublattice is 2? times the volume of the cell of 
lattice (e), that is,/2'  = SO. 

3. U = M -~, where M is an i matrix with 
I det M I = 27'. In this case e = e' M and (e) is a 
sublattice of (e'). The basis (e') then defines a 
superlattice of (e), i.e. a lattice that contains (e). The 
relation between the volumes of primitive cells is 27', 
that is, .(2' = 0/27'. 

There is a fourth important case in which U is a 
rational matrix (r matrix). This case will now be 
discussed in detail. 

2.2. Coincidence-site lattice; degree o f  coincidence 

Consider two s-dimensional lattices with bases (e) 
and (e'). One may think that the two lattices inter- 
penetrate in an s-dimensional Euclidean space. Then 
there is a relation of type (2) between the two bases, the 
matrix U defining the relative orientation of the two 
lattices. It will be assumed that the two lattices have 
one lattice point in common; this is always possible if a 
convenient translation is given to one of the lattices. 
The conditions under which the two lattices contain a 
common sublattice of dimension s will now be 
investigated. In this case, the two lattices have 
coincident points which form an s-dimensional lattice. 

The vector bases of sublattices of (e) and (e'), 
respectively, have the general form eN and e 'N ' ,  
where N and N'  are any i matrices (cf. § 2.1). 
Therefore, for a common sublattice to exist, it is 
necessary that there are two i matrices, N and N' ,  such 
that 

e N = e' N '  ( 6 a )  

o r  

e = e ' N ' N  -l. (6b) 

The matrix U = X which relates the two bases must 
then be of the form 

X = N ' N - ~ ;  e = e'X. (7) 

Since N -~ is in general an r matrix (because N -1 = 
adj N/det  N, where adj N is an i matrix and det N is an 
integer) one may conclude that a common sublattice of 
dimension s implies that X be rational. Conversely, if 
the matrix X relating the two bases is rational, it can 
always be written in the form (7). In fact, if n is the 
smallest integer such that n X  is an i matrix, it is enough 
to take for N a diagonal matrix with all diagonal 
elements equal to n. This is the general condition for 
coincidence, as already enunciated by Grimmer (1976) 
for three-dimensional lattices: a common sublattice of 
dimension s exists if and only if the matrix X relating 
the two bases is an r matrix. Alternative conditions for 
coincidence in two- and three-dimensional lattices were 
formulated by Bucksch (1972), which cannot easily be 
generalized for n-dimensional lattices. 

When X is rational, the CSL is defined as the 
sublattice that contains all points in coincidence. It is 
therefore the common sublattice which has a primitive 
cell of smallest volume. All common sublattices are 
sublattices of the CSL. To determine this lattice, one 
has to find a factorization of X of the type 

X = N ' N  -~, (8) 

with the smallest possible values of I detNI and 
I det N ' I .  These values will be denoted by 27 and 27'. 
They indicate the reciprocal fraction of coincidence 
points (or degree o f  coincidence) in lattices (e) and (e'), 
respectively. A factorization of X with the smallest 
absolute values 27, 27' of the determinants of the 
integral-factor matrices will be termed a c factori-  
zation. Then, if N and N'  are c cofactors of X, the basis 
of the CSL is 

eN = e 'N' .  (9) 

An equivalent c factorization is one with factors N S ,  
N ' S ,  where S is an arbitrary 1 matrix. 

In the following various methods for determining 27 
and 27' for a given X (r matrix) will be indicated. The 
derivation of the first two methods is given in the 
preceding paper (Fortes, 1983). We write X in the form 
X = (t/q) Q, where t and q are coprime integers and Q 
is an i matrix with elements that do not admit a 
common divisor: then q is the smallest positive integer 
such that qX is an i matrix. We find a set of s positive 
numbers d i for the matrix Q, termed the invariant set, 
such that d i is the greatest common divisor (GCD) of 
all square submatrices of Q of order i. Clearly d I = 1 
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and d s = I det Q I. Then we determine s numbers qi (the 
elementary divisors of Q): 

ql ~ dl  

qi = d i / d i - 1 .  (10) 

A diagonal matrix with elements qi is equivalent to Q. 
As shown in the preceding paper, the general method 
for obtaining the degree of coincidence is: 

Method  1. The degree of coincidence in lattice (e) is 
given by 

S = q(1) ... q(s) 

with 

q 

q(i) = GCD (q, qi) 

After finding X we may obtain 2;' = Z' I det X I. 
Alternative methods can be formulated to determine 

27 and X', by using the matrices X and X-L  We 
indicate here only the methods for matrices of order 3; 
q' is the smallest integer such that q' X -~ is an i matrix. 
Then (Fortes, 1983) 

Method  2. For three-dimensional lattices, 27 is the 
smallest positive integer such that 

27 22 det X 
and 

q q' 

are integers. 27' is the smallest positive integer such that 

X' 27' 
and 

q' q detX 

are integers. X and X' are also the smallest positive 
integers such that 

X X' 
- -  and 
q q' 

are integers and 27'/27 = I det X I. 
An equivalent method that follows immediately is 
Method  3. For three-dimensional lattices, X is the 

smallest positive integer such that 27X and (Xdet X)X -~ 
are i matrices and X det X is an integer. X' = 271det X I 
is the smallest positive integer such that X' X -~ and 
( X ' / d e t X ) X  are i matrices and X ' / d e t X  is an 
integer. 

The first two conditions determining X and X' 
expressed in method 3 have already been enunciated by 
Grimmer (1976). However, it is in general necessary to 
add the last condition, namely, that X de tX (or 
27'/det X) must be an integer. An example with X = ½I, 
where 1 is the identity matrix, shows that the first two 
conditions are not sufficient to determine X and X'. The 
conditions expressed in method 2 are, at any rate, 
simpler than those in method 3. Alternative methods 
for determining the degree of coincidence in two- and 

three-dimensional lattices have been developed by 
Bucksch (1972). 

The main results of this section can be summarized 
in the following points: 

1. A CSL exists if and only if the orientation matrix 
X is rational. 

2. The basis of the CSL is eN = e' N' ,  where N and 
N '  are c cofactors of X. 

3. The degree of coincidence can be obtained by 
method 1 (or method 2 or 3 for three-dimensional 
lattices). 

2.3. D S C  lattice 

A superlattice of (e) is defined by eM -1, where M is 
an arbitrary i matrix. Two lattices (e) and (e') have a 
common superlattice if there are i matrices M, M '  such 
that 

eM -1 = e 'M '-I (1 la) 

o r  

e = e ' M ' - I M  = e'X. (1 lb) 

The matrix X relating the two lattices has to be an r 
matrix of the form 

X = M ' - I M .  (12) 

Conversely, if X is rational it can be written in the form 
(12) and there is a common superlattice. When X is 
rational, the DSC (displacement-shift-complete) lattice 
is defined as the coarsest superlattice, i.e. the super- 
lattice with the largest volume of a primitive cell. All 
common superlattices are superlattices of the DSCL. 
The DSCL can also be defined as the coarsest lattice 
that contains all vectors of the form v + v', where v, v' 
are vectors of (e) and (e'), respectively (Bollmann, 
1970). 

For a given X, the DSCL is determined by making a 
factorization of type (12) with the smallest possible 
values of I det M I, I det M ' I .  Such a factorization will be 
termed a d faetorizat ion.  Noting that X r = 
M r ( M ' r )  -1, a d factorization of X can be obtained 
from a c factorization of X r, because transposition 
does not change the invariants d i. The values X, X' 
defined previously are therefore the minimum values of 
I d e t M ' l  and I de tMI respectively, i.e. the two fac- 
torizations are defined by 

X = N ' N - 1 ;  X = l d e t N I ;  X ' = l d e t N ' l  

X = M ' - ~ M :  X = l d e t M ' l ;  X ' = l d e t M I  (13) 

with X, X' given by any of the methods indicated 
above. 

A basis of the DSC lattice is 

eM -1 = e' M '- l ,  (14) 
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which defines a cell with a volume 1/2;' times the 
volume of the cell (e) and a volume 1/27 times the 
volume of the cell (e'). 

The vectors of the DSCL have components 
(h~, ... h~) in the basis (e) which are the solutions of 

M { h } = { i } .  (15) 

The symbol {} indicates a column vector: {i} is a 
column vector with integral elements. It is easily shown 
that the h i a r e  of the form h i = P i / 2 7 ' ,  where the Pi are 
the integral solutions of 

M 
- -  {p}  = {i}. (16)  
27, 

The DSCL vectors have rational components of the 
form cL/fl ( ~  fl coprime), where fl is among the divisors 
of 27' = detM. 

2.4. Determinat ion o f  c and d factor izat ions  

The actual determination of c and d factorizations 
relies on the determination of integral solutions of linear 
equations with rational (integral) coefficients. For 
third-order matrices, Grimmer (1977), following Bon- 
net (1976), has given an algorithm to determine both 
factorizations, which in fact relies on the solution of 
diophantine equations. In general, one of the factors 
can be taken as a triangular matrix. This is a 
consequence of the possibility of choosing a basis of a 
lattice (in the present case the CSL or DSCL) with the 
successive vectors in particular sublattices (of in- 
creasing dimension) of the lattice. Grimmer's algo- 
rithm can easily be generalized to n-dimensional lattices 
(Grimmer, 1981). 

3. Rec iproc i ty  relations 

G = X r G ' X  

G c = N r G N  

G D = ( M - ] ) r G M - ]  (18) 

Equivalent expressions for Gc and GD could be written 
with the matrices N',  M' ,  G'. 

The reciprocal basis (r) of any lattice (e) is defined as 

r = eG - ]  (19)  

(17)-(19) one obtains the well-known Combining 
relation 

r = r ' (Xr )  -~ . (20) 

The reciprocal lattices are also related by an r matrix, 
the c and d factorizations of which are easily related to 
those of X. For example, 

(XT) - 1 =  [ M r ( M ' - ~ ) T ] - ~ = M ' r ( M r )  -~, (21) 

which is a c factorization of ( x r )  -~. 
Bases of the various lattices and reciprocal lattices 

can now be determined with the following results: 

CSL of reciprocal lattices: 

r M r =  eG-IMr;  

DSC L of reciprocal lattices: 

r(Nr)  -1 = eG- l (Nr) - l ;  

reciprocal lattice of CSL: 

e N ( N r G N )  -] = eG-~(Nr)-~; 

reciprocal lattice of DSCL: 

eM-l[(M-1)r  G M - q - 1  = e G - 1 M  r. 

These relations show that the CSL (DSCL) of the 
reciprocal lattices is the reciprocal lattice of the DSCL 
(CSL) of the two lattices. 

The reciprocity relations between the CSL and DSCL 
were first derived by Grimmer (1974a) for three- 
dimensional lattices using essentially number theory. 
More recently, the same relations were derived for 
space lattices by Iwasaki (1976) using group theory 
and by Bacmann (1979) using Poisson distributions. 
The following derivation for n-dimensional lattices is 
based on matrix algebra. 

As shown in § 2 if 

e = e ' X  (17) 

with X rational, the two lattices (e) and (e') (of the 
same dimension) have a CSL and a DSCL (of the same 
dimension as the original lattices), the bases of which 
are defined by the matrices obtained in c and d 
factorizations of X. Denoting by G and G' the metric 
matrices of the two lattices, and by G c and G O the 
metric matrices of the CSL and DSCL, one may write 

4. Determinat ion  o f  co inc idence  orientations 

Given two s-dimensional lattices defined by their metric 
matrices G and G' (or by their bases), an important 
problem is to find the relative orientations for which a 
CSL (and therefore a DSCL) exists. A CSL orienta- 
tion e = e' X is defined by any r matrix X, such that 

G = X r G ' X .  (22) 

Attempts at finding the general solution of this equation 
were made by Santoro & Mighell (1973) and by 
Bonnet & Cousineau (1977); and special methods were 
developed for two identical cubic lattices (Grimmer, 
1974b; Bleris & Delavignette, 1981) and hexagonal 
lattices (Bonnet et al., 1981). 

In the following discussion, it will be assumed that a 
particular rational solution X 0 of this equation has been 
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determined. Of course, the existence of a solution 
implies some restrictions on G and G' (Bucksch, 1972; 
Fortes, 1977) and in general (22) will be impossible 
with X rational. 

If a particular solution X 0 has been found, all the 
other rational solutions X can be obtained from X 0 by 
multiplication by the rational rotation matrices of one 
of the lattices. Such matrices, for lattice G, are the 
(rational) solutions of 

R r G R  = G. (23) 

More precisely, the general rational solution of (22) is 

X = X o R  , (24) 

where R is the general (rational) solution of (23) and X 0 
is a particular solution of (22). These results follow 
immediately from an analysis of (22) and (23). It is also 
possible to obtain the general solution using the 
rotation matrices R'  of (e'): 

x =  R'Xo. (25) 

For the same solution X, the two matrices R and R'  
in (24) and (25) are related by R'  = X o R X o  L The 
traces of R and R '  are therefore the same, this meaning 
that the 'angles of rotation' (which are related to the 
trace, t, by t = 2 cos 0 + s - 2) are 0 and -0 .  It can 
also be shown that the (s - 1)-dimensional sublattice of 
(e) that remains invariant in the rotation R (e.g. the 
rotation axis in three-dimensional lattices) is in co- 
incidence with the corresponding (e') sublattice for R'.  
All these results are of simple interpretation, noting that 
what matters is the relative rotation away from the 
CSL orientation defined by X o. 

In conclusion, if one CSL orientation is known all 
the others can be obtained by rotating one of the 
lattices away from that orientation, the rotation being a 
CSL rotation of that particular lattice. A more subtle 
conclusion is the following: if a CSL orientation exists, 
the two lattices will admit CSL rotations of the same 
angle in a one-to-one correspondence. 

5. Coincidence in sublattiees of lower dimension 

So far we have discussed a particular type of 
coincidence between two s-dimensional lattices, 
namely, the one in which the coincident points define an 
s-dimensional CSL. For this case we have indicated 
methods of determining the fraction of coincident 
points, that is the ratio between the volume of the cell of 
the CSL and that of each of the original lattices. We 
have also studied the properties of the DSC lattice and 
its relation to the CSL. We shall treat in this section the 
possibility of coincidence in sublattices of dimension 
r < s, which may of course occur even if there is not an 
s-dimensional CSL. 

5.1. Definitions 

The term r sublattice will be used to designate a 
sublattice of lower dimension, r, of a given lattice. A 
CSL in an r sublattice will accordingly be termed an r 
CSL. 

Any r sublattice of a lattice (e) may be defined by a 
s × r rectangular i matrix C, of rank r. The basis of the 
r sublattice is the set of r independent vectors. 

eC. (26) 

This r sublattice will be termed a complete r sublattice 
(er sublattice) if it contains all vectors of (e) that are 
parallel to any vector of the r sublattice. It is easy to 
show that in this case the matrix C must have the 
following property: the equation CD -1 = i matrix only 
admits solutions in D (an i matrix r x r) with 
I det D I = 1. By a sublattice of the cr sublattice C we 
shall mean an r sublattice of C with the same 
dimension. Any such r sublattice has a basis of the type 

eCN, (27) 

where N is an r × r i matrix. 
The degree of coincidence in an r sublattice 

(complete or not) is the reciprocal fraction of co- 
incident points in that r sublattice relative to all points 
in the same sublattice. The complete degree of 
coincidence is defined in relation to the cr sublattice. 

5.2. Conditions f o r  coincidence in r sublattices 

Consider again two lattices (e) and (e'), of the same 
dimension s, related by a matrix X, 

e = e'X. (28) 

A vector hi = ~ t  hi, el of lattice (e) (the hi, are integers) 
is a coincident vector if and only if there is an equal 
vector in lattice (e'), that is, if 

X { h , }  = {i}, (29) 

where {h~} is a column matrix and {i} is an arbitrary 
integral column matrix. If it is possible to find r such 
vectors (and no more than r) that are linearly 
independent, there is coincidence in an r sublattice of 
(e) (but not in sublattices of higher dimension). A basis 
of that r sublattice is defined by the set of r vectors 
(hi, hz, ..., hr), or equivalently by a rectangular r x s 
matrix C, the columns of which are the components of 
each of the hi; the basis is eC. For an r CSL to exist in 
the r sublattice C of lattice (e), it is necessary and 
sufficient that an i matrix N (r x r) can be found such 
that 

X C N =  {i}. (30) 

In fact, in this case 

eCN = e ' X C N  = e' {i} (31) 
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and vectors of the r sublattice C coincide with vectors 
of (e'). The degree of coincidence Z is of course the 
smallest value of IdetNI for N satisfying (30). With 
this N, a basis for the r CSL is defined by (31). Note 
that the complete degree of coincidence is pZ', where 
p -- I det D r, D being a matrix with largest p such that 
CD -1 = i matrix. If we had considered an r sublattice 
C' of (e'), the condition for coincidence would be 

X - ' C ' N ' =  {i} (32) 

and the degree of coincidence, £", the smallest value of 
IdetN' l  with N '  satisfying (32). The complete degree 
of coincidence is p '  Z' .  The actual determination of Z, 
Z '  will not be dealt with in detail. 

Clearly, conditions (30) or (32) do not imply that X 
be an r matrix. If it is, the two lattices are in a CSL 
orientation, coincidence occurs in all r sublattices, and 
(30) or (32) have solutions N, N '  for any integral 
rectangular matrices C, C'. 

To end this section, we shall find the general form of 
X for which coincidence in r sublattices occurs. As 
discussed above, given two lattices (e) and (e') of 
dimension s, coincidence will occur in an r sublattice, if 
it is possible to find two s x r integral i matrices C, C' 
such that 

eC = e 'C' .  (33) 

The above vectors define a basis of the r CSL of that r 
sublattice (we assume that C, C' are of rank r). We 
now construct extended matrices Cex and Ce'x obtained 
from C and C'  by adding (s - r) columns of real 
numbers, with a first restriction that Ce, , and C; X should 
be non-singular. Then 

eCex = e'C'x (34) 

o r  

t -1  
e = e '  X ;  X - -  C e xC e x  (35) 

defines a relative orientation for which coincidence in 
the r sublattices C and C' occurs. Note that the relation 
G = X r G ' X ,  where G and G' are given matrices, 
imposes further restrictions on the real numbers used to 
extend C and C'. Clearly X does not have to be 
rational. 

5.3. Degree o f  coincidence in (s - 1) sublattices 

As shown in the preceding paper (Fortes, 1983), the 
maximum coincidence in complete r sublattices of (e) 
corresponds to a degree of coincidence equal to the 
invariant divisor d r [cf  § 2.2 and equation (10)] of the 
matrix N in a c factorization of the orientation matrix 
At. 

It will now be assumed that the two lattices of 
dimension s are in a CSL orientation. We shall discuss 
in detail the method of determining the degree of 
coincidence in sublattices of dimension s - 1. This 

problem is particularly important in the context of 
crystalline interfaces, where it is frequently of interest 
to know the degree of coincidence in the planes of two 
space lattices in a CSL orientation. An (s - 1) 
sublattice is more conveniently defined by a vector v = 

r i Vi, of the reciprocal lattice, which is perpendicular 
to all vectors of the sublattice. The two representations 
are related by 

{ v } r C = O ,  (36) 

where C is an s x (s - 1) matrix defining the (s - 1) 
sublattice and {v} r is a row vector with elements v i. If 
C defines a complete sublattice, the v~ should be taken 
as coprime integers; we shall consider only this case. 
The corresponding vector v' of the reciprocal lattice 
(r') is obtained from 

{v'} = ( X - ' )  r Iv}. (37) 

Let 2; be the degree of coincidence of the two lattices, 
referred to lattice (e) and N the corresponding c 
cofactor of X. The complete degree of coincidence S C in 
the (complete) sublattice of (e) defined by C or v is 
determined as follows. Let q be the largest positive 
integer such that 

( l /q) Z vi r i (38) 
t 

is a vector of the reciprocal lattice of the CSL. A basis 
(R) of this reciprocal lattice is [see end of § 2 and 
equation (19)] 

R = r(Nr)  - ' .  (39) 

If the vector (38) is a vector of lattice (R) then 

(l /q) Nr{v} = {i}. (40) 

Since N is known, the largest positive integer q can be 
determined from this equation for each v. There is one 
in every q sublattices v where coincidence occurs, a 
consequence of the way q was defined. The degree of 
coincidence Z~ in the sublattice is then 

Z c = Z / q .  (41) 

The (s - 1) sublattices can be classified according to 
the values of S c, which are necessarily divisors of Z 
and multiples of the invariant d s_ ~ of the matrix N. One 
may also find the (s - 1) sublattices which correspond 
to a particular value of S c. To do this, consider the 
lattices with bases r and r(Nr/q) .  The vectors v which 
are solutions of (40) are the vectors of the CSL of these 
two lattices. A basis for this CSL can be found in the 
usual way, by determining a c factorization of N r / q :  

N r / q  = P ' P - k  (42) 

The sublattices for each value of q have normals v 
which are lattice vectors of the CSL rP. They are then 
of the form 

{ v } r = p { i }  r. (43) 
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Abstract 

The method of point-group determination from con- 
vergent-beam electron diffraction patterns has been 
established by Buxton, Eades, Steeds & Rackham 
[Philos. Trans. R.  Soc. London  (1976), 281, 171-194]. 
However, Table 2 given by them is inconvenient for 
practical purposes, since many symmetries of the 
dark-field and +G dark-field patterns are not given and 
are left for the reader's consideration. The table is 
improved and completed with the help of some new 
symmetry symbols and illustration of symmetries. The 
new table makes the point-group determination easy 
and quick. The symmetries of the symmetrical many- 
beam convergent-beam electron diffraction patterns 
have been studied by Tinnappel [PhD Thesis (1975), 
Tech. Univ. Berlin l using group theory. It is shown that 
the graphical method used by Buxton et al. can reveal 
the symmetries of these patterns. A method of 

* Present address: Hitachi Research Laboratory, Hitachi 319-12, 
Japan. 

point-group determination which uses three types of 
symmetrical many-beam patterns, the hexagonal six- 
beam, square four-beam and rectangular four-beam 
patterns, is described. This method requires only one 
photograph in determining most diffraction groups. 
This fact means that the method is more convenient 
and reliable than that of Buxton et al., since their 
method requires two or three photographs for most 
cases. Experimental results which verify the theoretical 
ones are given. The characteristic features of the 
symmetrical many-beam method are discussed. 

Introduction 

The recent crystallographic studies by means of 
convergent-beam electron diffraction (CBED) orig- 
inated with Goodman & Lehmpfuhl (1965), although 
the earlier work by Kossel & M611enstedt (1939) was 
done about four decades ago. They obtained CBED 
patterns by converging a conical electron beam of an 
angle of more than 10 -2 rad on a small area of a 
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